Amplicon-contained lateral flow test that enables sequential delivery: a demonstration on HIV drug resistance detection

<u>Kyla Yamashita¹, Shane Gilligan-Steinberg¹, Josef Henthorn¹, Barry R. Lutz¹, Nuttada Panpradist^{2,3,4}</u>

¹Department of Bioengineering, University of Washington, ²Department of Global Health, University of Washington, ³Ministry of Health, Kenya, ⁴Chiang Mai University, Thailand

Background

- HIV drug resistance (**HIVDR**) testing is important
 - The oligonucleotide ligation assay (**OLA**) kit, ligation to detect HIVDR-associated mutation
- Lateral flow tests (LFTs) used in molecular assa amplicon and several transfer steps. Detection of 1) Displacement of unligated probes from eliminate false mutant signal Fig. 1 2) Sequential delivery of ligation product
- These steps expose substantial risks for amplicor complexity of LFTs, especially with inexperienced Need: a functional self-contained LFT that

Materials and Methods

Tube (1) 36µL ligation reaction

FAM tagged

mutant probe common probe/

Mismatched wild-type template

Biotin tagged

Anti-biotin

gold:

Tube (2)

50µL detection buffer (gold + competing oligo) Competing oligos: Reverse mutant probe

Reverse common probe

sample por sequential

	Res
s important for treatment management / (OLA) kit, "OLA-Simple" uses allele-specific probe ted mutations. [1,2]	
lecular assays involve opening tubes containing betection of OLA products requires: probes from their mismatched HIV templates to Fig. 1 on product and detection buffer on the LFT or amplicon contamination and increase the experienced users ed LFT that enables sequential delivery	Blow
ods	ential de
Duplex of unligated probes and mismatched templates displaced with competing oligos	Segu
otin	Conc
 Components: Tube 1 contained HIV wild-type (WT) templates annealed to mismatched mutant (MUT) and common probes → false mutant signals Fig. 1 	• Demo • •
 Tube 2 contained gold solution with or without competing oligonucleotides (CO) → CO should displace the unligated probes to eliminate false mutant signal Custom LET device prototype Fig. 2 bas: 	 Poter Simpl •
 Two sample ports with plastic spikes Reaction tubes with custom foil-sealed caps Reading window at the bottom 	
sample ports. (ii) The foil-sealed caps are punctured sequentially to release the two fluids.	 Some furthe

ults and Discussion

- The flow experiment showed successful sequential delivery of two different colored fluids Fig. 3, from blue (first tube) to red (second tube)
- When the **detection fluid did not contain CO**, strong mutant bands could be distinguished visually Fig. 4
- Output intensities (n=3, mean ± SE) at the mutant band without CO were 16.3 ± 2.7
- When the **detection fluid contained CO**, signal at the mutant bands was not visible and was comparable to the signal of the negative controls:
- Output intensities at the mutant band with CO were **0.17 ± 0.11**

clusions

- onstrated a proof-of-concept custom LFT: **Self-contained**/streamlined workflow Sequential delivery of ligation product and detection buffer without "opening" ampliconcontaining tubes
- ntial to improve the implementation of OLAle for HIVDR testing in low-resource settings:
- Reduces amplicon contamination in laboratories Costs **\$0.25 USD per unit** vs. \$15 USD per unit for commercial amplicon-contained LFTs
- Uses **biodegradable plastics with safe plastic pins** vs. metal blades which require thicker plastic to ensure user safety [3]
- inconsistent flow across replicates will require er 3D printer quality optimization

Corresponding author: NP (nuttadap@uw.edu)

Without competing oligos in detection mix: MUT MUT band CTRL band With competing oligos in detection mix: MUT CTRL MUT band CTRL band No competing oligo 12 Inten 5µM competing oligo Water control a Sigr (n=3, mean±SE) MUT band CTRL band

Acknowledgments

<u>Collaborators</u>: Dr. David McIntyre for prior contributions to earlier designs of the custom LFT device; Dr. Annie Wong-On-Wing, Annapurni Sriram, and Dr. Amy Oreskovic for their contributions to assay chemistries; Parker Ruth and Brian Tran for software analysis; Dr. Lisa Frenkel and her group at Seattle Children's Research Institute for their expertise in OLA for HIVDR.

Funds: NIH R01 (R01Al145486). The funder has no role in the study design or interpretation of this work.

