Diagnostic accuracy of a near point-of-care HIV drug resistance test OLA-Simple: a field validation study in Kenya

Seattle Children's WASHINGTON

N Panpradist 1,2*, IA Beck 3*, A Miller 1, AM Cash 1, J Campbell 1, SWA Stewart 1,3, PS Ruth 4, B Chohan 1,5, P Owiti 6, G Akinyi 7, N Nyakundi 7, VA Sewe 7, RS Madada 2, V Onwonga 2, S Akasa 2, K Yamashita 1, B Tran 1, EC Kline 1, J Vrana 1, G Thakur 1, JH Kotnik 1, J Sprecher 1, Q Wang 1, S Gilligan-Steinberg 1, J Henthorn 1, JK Liu 1, KL Tukei 1, M Samadpour 8, L Kingwara 2, N Bowen 2, V Opollo 7, LM Frenkel 1,3, L Abougi 9, E Klavins 1, P Oyaro 7, BR Lutz 1†, R Patel 1†

1 University of Washington, Washington, USA; 2 National HIV Reference Laboratory, Nairobi, Kenya; 3 Seattle Children's Research Institute, Washington, USA; 4 Stanford University, California, USA; 5 Kenya Medical Research Institute, Nairobi, Kenya; 6 University of Nairobi, Nairobi, Kenya; 7 Kenya Medical Research Institute / Center for Disease Control, Kisumu, Kenya; 8 IEH Consulting Group, Washington, USA; 9 University of Colorado, Colorado, USA* Authors with equal contributions † Co-corresponding authors (BRL: Engineering corresponding author, RP: Clinical corresponding author)

BACKGROUND

Dolutegravir (DTG) is associated with improved antiretroviral therapy (ART) outcomes. Despite data suggesting that acquired HIV drug resistance (HIVDR) does not undermine efficacy of DTG-ART, additional studies are needed to further evaluate the effects of extensive pre-existing nucleos(t)ide resistance on DTG-ART across subtypes.

In 2019, we reported development and clinical validation of "OLA-Simple," an easy-to-use, point-mutation HIVDR test. 1-3

- Ready-to-go dried reagents easy assay set up
- Custom-designed lateral flow tests visual readout
- In-house software to guide "molecular biology novices"

Same-day results <10-min hands-on time

- This work presents:
 - Our recent probe development to include detection of HIVDR mutations against Abacavir
 - Our first-ever clinical validation of OLA-Simple that is performed in laboratories from Kenya.

METHODS

OLA Simple CHEMISTRY

STUDY DESIGN

Study time frame: April-June 2022.

PHASE I (3 days on-site training)

PHASE II 8-10 weeks of independent testing by local lab technicians

Blind testing at KEMRI/CDC: 87 plasmas collected from children and pregnant/postpartum women software as mutant, wildtype, or eterminate (excluded two sampl

assays:
Sanger sequencing and
laboratory OLA.
Laboratory OLA detects ≥2%

RESULTS AND DISCUSSION PHASE I | On-site training local researchers using DNA controls

- Three and four technicians were trained at NHRL and KEMRI-CDC, respectively. During the observed training, US trainer observed the run performed by the local researchers. During the unobserved training, technicians operated independently without observation and relied completely on the software guide.
- Genotype classifications of the results obtained both during the observed and unobserved runs had a 100% agreements with the genotypes of the DNA controls.

PHASE II | Local researchers evaluated OLA-Simple on plasma specimens

- RT-PCR for OLA successfully amplified 134 specimens (91.8%) with plasma HIV RNA between 27 - 11013 copies/reaction (median: 317). The ones that failed had 35 - 1940 copies/reactions; thus RT-PCR failure could be due to a combination of factors:
 - Low RNA input (near the limit detection of RT-PCR)
 - PCR inhibitors carried from the extraction step, and/or
 - RNA degradation due to introduction of multiple freeze-thaw cycles of plasmas.
- From successfully amplified specimens, 132 had OLA-Simple image data for analysis of 924 codons which included 275 mutant, 612 wild-type and 37 (4%) indeterminate results (see Table 1).

Table 1. Summary of OLA-Simple results compared to Sanger with discordant results adjudicated by sensitive benchmark (laboratory OLA)

	K65R	L74V/I	K103N/S	Y115F	Y181C	M184V	G190A	Total
True (-)	114	96	50	112	103	35	88	589
True (+)	6	25	69	11	21	87	33	258
False (+)	2	3	8	0	2	2	6	23
False (-)	0	0	4	4	1	4	1	14
Indeterminate	10	8	1	5	5	4	4	37

Sensitivity 94.7% [95%CI: 91.3-97.1]					
Specificity 96.3% [95%CI: 94.5-97.6%]					
Indeterminate 4% [95%CI:2.8-5.5]					

- OLA-Simple detected 6 low frequency mutant variants missed by Sanger (confirmed by laboratory OLA sensitive to 2% mutant) and misclassified 23 (2.4%) wild-type codons as mutant and 14 (1.6%) mutant codons as wild-type.
- Based on these results, OLA-Simple had sensitivity of 94.7% and specificity of 96.3%.

CONCLUSIONS AND NEXT STEPS

- This in-field validation study serves as a significant step towards implementation of OLA-Simple in LMICs. It reveals OLA-Simple's high sensitivity and specificity.
- Our next steps include validation of these probes on prospective samples, and developing OLA probes to detect DTG HIVDR mutations.

ACKNOWLEDGMENTS

We thank our collaborators: Dr. James Lai at the University of Washington, USA. Dr. Theresa Rossouw at University of Pretoria, SA; Dr. Gonzague Jourdain and Dr. Nicole Ngo-Giang-Huong at PHPT, Thailand, Dr. Jaime Soria at Hospital Nacional Dos de Mayo, Peru for stimulating discussion.

Funding sources:

REFERENCES

guided HIV-1 drug resistance test for low-resource laboratories." 2019. EBiomedicine

IA Beck, et. al. "Rapid and sensitive oligonucleotide ligation assay for detection of mutations in human immunodeficiency virus type 1 associated with high-level resistance to protease inhibitors." 2002. Clinical Microbiology.