Development of <u>o</u>ligonucleotide <u>ligation <u>a</u>ssay (OLA) and lateral flow test to detect <u>m</u>ulti-<u>d</u>rug <u>r</u>esistant <u>t</u>u<u>b</u>erculosis (MDR-TB) for Kenyan population</u>

Brian Tran, Kyla Yamashita, Inyoung Seo, Whitney Nakata, Ronald Odero, Barry Lutz, <u>Nuttada Panpradist</u>

Suggested citation:

Brian Tran, Kyla Yamashita, Inyoung Seo, Whitney Nakata, Ronald Odero, Barry Lutz, Nuttada Panpradist "Development of oligonucleotide ligation assay and lateral flow test to detect multi-drug resistant tuberculosis". Biomedical Engineering Society Meeting, 2023. Seattle, Washington

Development of <u>o</u>ligonucleotide <u>ligation <u>a</u>ssay (OLA) and lateral flow test to detect <u>m</u>ulti-<u>d</u>rug <u>r</u>esistant <u>t</u>u<u>b</u>erculosis (MDR-TB) for Kenyan population</u>

Brian Tran, Kyla Yamashita, Inyoung Seo, Whitney Nakata, Ronald Odero, Barry Lutz, <u>Nuttada Panpradist</u>

Nuttada Panpradist, Ph.D. (Dr. Panda)

<u>Main</u>: Postdoc, Department of Global Health, University of Washington, Washington, USA Research officer, National HIV Reference Laboratory, Ministry of Health, Nairobi, Kenya Faculty Lecturer, Associated Medical Science, Chiang Mai University, Thailand

2023 Biomedical Engineering Society Meeting, Seattle, Washington October 13th, 2023

Fund: 2022 Seattle Tuberculosis Research Advancement Center (SEATRAC) New Investigator Award (PI: Panpradist)

Outline

- **Platform technology**: What is OLA? OLA-Simple?
- Bi-directional collaboration with local Kenyan researchers to develop OLA and lateral flow test for MDR-TB
 - Need identification
 - Pipeline for implementation
 - Tech knowledge transfer plan

What is OLA?

High sensitivity polymerase chain reaction (PCR) to amplify 100 to billion copies

High sensitivity polymerase <u>chain reaction (PCR)</u> to amplify 100 to billion copies

High specificity via ligase detection reaction (LDR) Ligation of probes does occur when the bases are matched

High sensitivity polymerase <u>chain reaction (PCR)</u> to amplify 100 to billion copies

High specificity via ligase detection reaction (LDR) Ligation of probes does occur when the bases are matched

High sensitivity polymerase <u>chain reaction (PCR)</u> to amplify 100 to billion copies

High specificity via ligase detection reaction (LDR) Ligation of probes does NOT occur when the bases are <u>MISmatched</u>

High sensitivity polymerase chain reaction (PCR) to amplify 100 to billion copies

High specificity via ligase detection reaction (LDR) Ligation of probes <u>does NOT occur</u> when the bases are <u>MISmatched</u>

Enzyme Linked ImmunoSorbent Assay (ELISA) Only ligated probes are detected

Streptavidin

OLA-Simple: a simplified OLA platform for point-mutation detection

- Ready-to-go dried mixtures easy assay set up
- Lateral flow tests visual readout
- Interactive software "Aquarium" 1st-time users showed 97% accuracy operating OLA-Simple [1,2]
 - Near point-of-care simple enough that a hospital lab can perform.

My PhD thesis 2021 (PI: Barry Lutz) [1] N Panpradist, et.al. 2019. Ebiomedicine; [2] N Panpradist and J Vrana et al. 2021 PLOS Global Health

"Can we make an OLA-Simple for <u>MDR-TB</u> detection?"

Beginning of MDR-TB project – during my visit in Kenya

Outline

- Platform technology: What is OLA? OLA-Simple?
- <u>Bi-directional collaboration with local Kenya researchers</u> to develop OLA and lateral flow test for MDR-TB
 - Need assessment
 - Pipeline for implementation
 - Tech knowledge transfer plan

OLA-Simple for MTB-DR?

Need assessment	Why is MTB-DR test needed?Where is the gap in the existing methods?What does OLA-Simple offer?
Implementation	

Tech knowledge Transfer / R&D

plan

Need assessment: clinical need for MDR-TB test

- Tuberculosis (TB) is the 2nd leading cause of death by infectious disease worldwide, <u>10% of children deaths in Kenya</u>.
- Multi-drug resistant TB (MDR-TB) is resistant to both rifampicin (RIF) or isoniazid (INH) – *in Kenya about 2% in the untreated;* 10% in the previously treated population.
- MDR-TB test results inform clinicians to select proper treatment, improving treatment outcome and reducing transmission
- Technical compatibility a set of point-mutations determined by WHO to be associated with MDR-TB.

Need assessment: where is the gap for MDR-TB test in Kenya?

		•
	Xpert ®	FL
	MTB/RIF	LPA
1) Coverage		
INH resistance	No	Yes
RIF resistance	Yes	Yes
2) Equipment		
Thermal cycler*	>\$12,900	>\$3000
Sequencer	No	No
Ultrasonic bath	No	Yes
3) Consumables	;	
Waste	Toxic	Non-toxic
Cost / sample**	\$77.9	\$12
4) Usability		
Turn around	<2h	72h
Training	Minimal	Extensive

* The smallest module cost, ** if not subsidized

Need assessment: where is the gap for MDR-TB test in Kenya?

	Xpert®	FL	OLA-Simple			
	MTB/RIF	LPA	(proposed)			
1) Coverage						
INH resistance	No	Yes	Yes			
RIF resistance	Yes	Yes	Yes			
2) Equipment						
Thermal cycler*	>\$12,900	>\$3000	>\$500			
Sequencer	No	No	No			
Ultrasonic bath	No	Yes	No			
3) Consumables			No			
Waste	Toxic	Non-toxic	Non-toxic			
Cost / sample**	\$77.9	\$12	\$10			
4) Usability						
Turn around	<2h	72h	3h			
Training	Minimal	Extensive	Minimal			

* The smallest module cost, ** if not subsidized

OLA-Simple for MTB-DR?

Need assessment

- Why MTB-DR test is needed?
- Where is the gap in the existing methods?
- What does OLA-Simple offer?

Implementation plan

- What is the regulatory pathway?
- How did the test kits get manufactured at scale?
- Who will pay for it?

Tech knowledge Transfer / R&D

Implementation plan and local manufacturing partner:

- Reference lab (running FL LPA routinely) access to specimen panels with known status (enriched for mutation)
- KEMRI in Nairobi has experienced developing an antigen-based lateral flow test
- KEMRI identifies regulatory pathway.
- Government currently covers the cost of MDR-TB test (Xpert and LPA) – our team is connected national TB program.

OLA-Simple for MTB-DR?

Need assessment

- Why MTB-DR test is needed?
- Where is the gap in the existing methods?
- What does OLA-Simple offer?

Implementation plan

- What is the regulatory pathway?
- How did the test kits get manufactured at scale?
- Who will pay for it?

Tech knowledge Transfer / R&D

- How can we reduce the R & D cost?
- How can we maximize engagement with local researchers?

R & D pipeline for OLA-Simple MDR-TB

2. New high-throughput screening method based on melt analysis

3. Transfer OLA into OLA-Simple format using labeled probes

Consensus sequence of *rpoB*, *katG*, *inhA* from European Nucleotide Archive.

1. In-silico design of probes

 Wild-type (WT), mutant (MUT), and common (COM) probes corresponding to each mutation

10 mutations are associated with RIF and INH resistance									
INH		RIF							
ini	hA	katG	rpoB						
c-777t	g-154a	S315T	H455L	L452P	S450L/W	S450F	H445Y/D	D435Y	D435V

R & D pipeline for OLA-Simple MDR-TB

2. New high-throughput screening method based on melt analysis

3. Transfer OLA into OLA-Simple format using labeled probes

Unlabeled probes + template (\$50 USD/SNP)

1. In-silico design of probes

 High-throughput screening using intercalating dye and ligation mixture.

Inyoung Seo, Brian Tran, Barry R Lutz, Nuttada Panpradist. A Rapid, High-throughput Melt-based Optimization of OLA to Detect MDR-TB. BMES. 2023

R & D pipeline for OLA-Simple MDR-TB

1. In-silico design of probes

2. New high-throughput screening method based on melt analysis

D435V

D435Y

3. Transfer OLA into OLA-Simple format using labeled probes

S450F

L425P

H445Y/D

S450L/W

MUT

O

WΤ

9

WT

S450L/W

MUT

- Labeled probes for RIF mutations
- Lateral flow test with corresponding antibody captures & BSA control line
- Anti-biotin gold nanoparticles
- Strand displacement oligo to eliminate probe-template duplex

H445L

○ Signal from WT band ○ Signal from MUT band

Method described in N Panpradist, et.al. 2019. Lancet Ebiomedicine

Key messages:

- **Bi-directional collaboration with local researchers** could be a pathway to **accelerate:**
 - Tech development (i.e., right product for the context),
 - Implementation (i.e., plan for scale up and regulatory)
 - User uptake of medical technology (i.e., engaging with national program)
- Transferring technical knowledge and skills to local researchers will increase equity in medical research and promote decolonization.
 - Local researchers are very coachable. They just lack educational opportunities.
 - By building technical capability and giving credits (through authorship), the LMICs will have more autonomy and (to me that is the pathway for sustainable diagnostics).

Thank: UW collaborators from

- 1) Global WACh at Hans Rosling Building Pop Health
- 2) Lutz Lab at Bioengineering
- 3) Wasser Lab at Conservation Biology
- 4) Bohringer Lab at Electrical and Computer Engineering

5) Frenkel Lab at Seattle Children's Research Institute6) Hladik Lab at Fred Hutch

8) Klavins Lab at MOLES/NanoES

