# Development and Optimization of Oligonucleotide Ligation Assay (OLA) Probes for Detection of HIV-1 Resistance to Dolutegravir IA Beck<sup>1</sup>, CL Boyce<sup>1</sup>, M Bishop<sup>1</sup>, YL Vu<sup>2</sup>, A Fung<sup>2</sup>, S Styrchak<sup>1</sup>, <u>N Panpradist<sup>2</sup></u>, BR Lutz<sup>2</sup>, LM Frenkel<sup>1,2</sup>

<sup>1</sup> Seattle Children's Research Institute, Seattle, WA, USA; <sup>2</sup> University of Washington, Seattle, WA, USA

# Introduction

### **Background:**

- Dolutegravir (DTG) is the recommended drug for 1<sup>st</sup>-line antiretroviral treatment (ART) of HIV infection in resource-limited settings
- While DTG has a high barrier to resistance, following the global rollout of DTG-based ART, reports of ART failure with selection of drug resistance (DR) are emerging
- Access to timely detection of virologic failure and emerging DR is not readily available in many resource-limited settings, compromising the long-term effectiveness of ART programs

## **OLA-Simple:**

Near-point of care HIV DR kit for detection of NNRTI and NRTI mutations associated with failure of NNRTI-based ART

# Results

 Table 2. Summary of OLA genotyping results at 300 HIV IN codons

 compared to PacBio/Sanger sequencing

|          |        | OLA      | PacBio/Sanger |        |          |  |
|----------|--------|----------|---------------|--------|----------|--|
| Mutation | Mutant | Wildtype | Indeterminate | Mutant | Wildtype |  |
| G118R    | 5      | 39       | 6             | 7      | 43       |  |
| Q148K    | 0      | 47       | 3             | 0      | 50       |  |
| Q148R    | 0      | 44       | 6             | 0      | 50       |  |
| Q148H    | 0      | 48       | 2             | 0      | 50       |  |
| N155H    | 5      | 45       | 0             | 5      | 45       |  |
| R263K    | 5      | 45       | 0             | 5      | 45       |  |
| Total    | 15     | 268      | 17            | 17     | 283      |  |

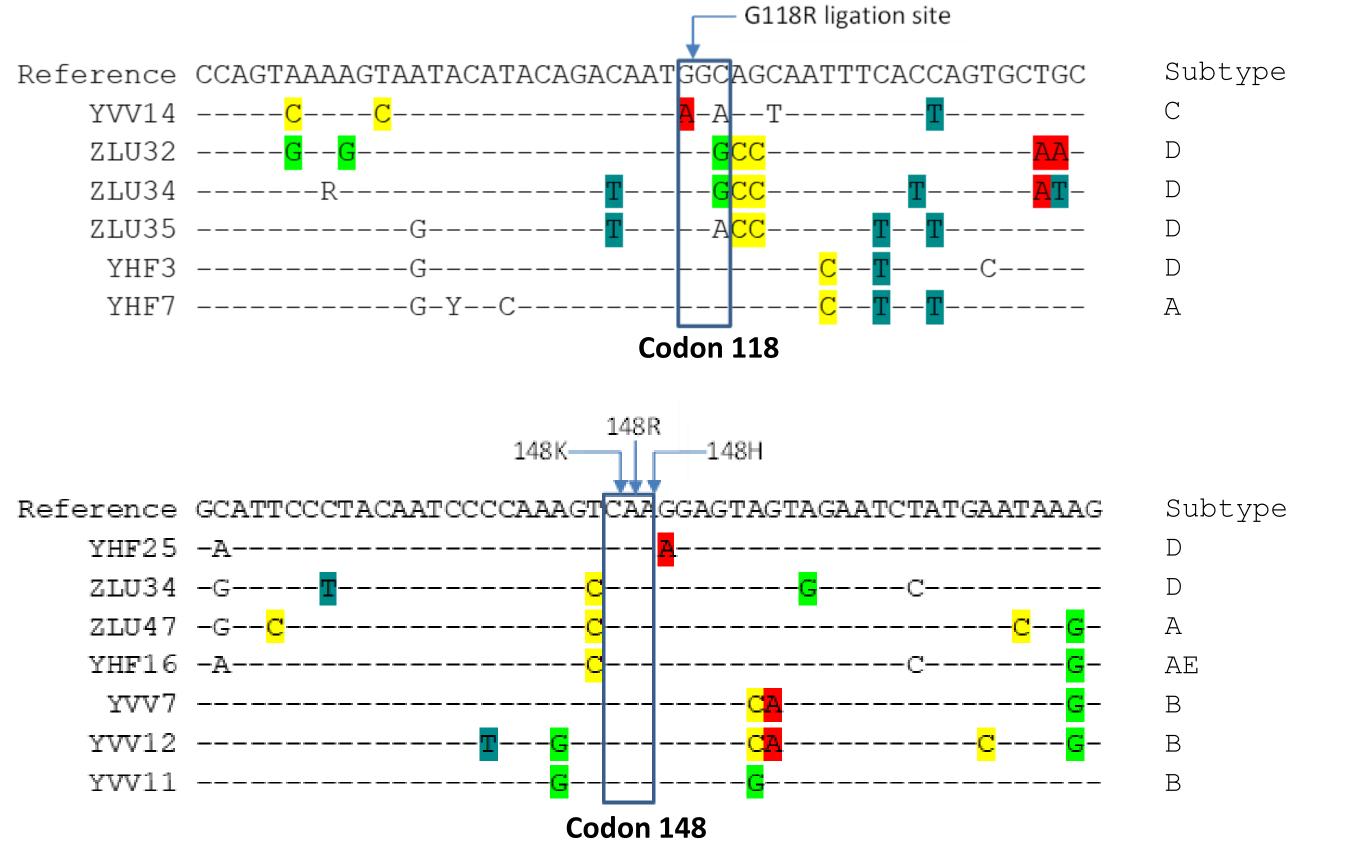


- Dried reagents easy assay set-up
- Custom-designed lateral flow tests visual readout
- Step-by-step software guide minimal training

#### **Objective:**

Develop and validate OLA probes for detection of DTG resistance mutations with the goal of expanding use of OLA-Simple in resource-limited settings

## Methods


#### **Selection of DTG mutations:**

- Compiled published data from clinical trials and case reports
- Identified integrase (IN) mutations prevalent in patients with virologic failure of DTG-based ART, including those occurring as single mutations

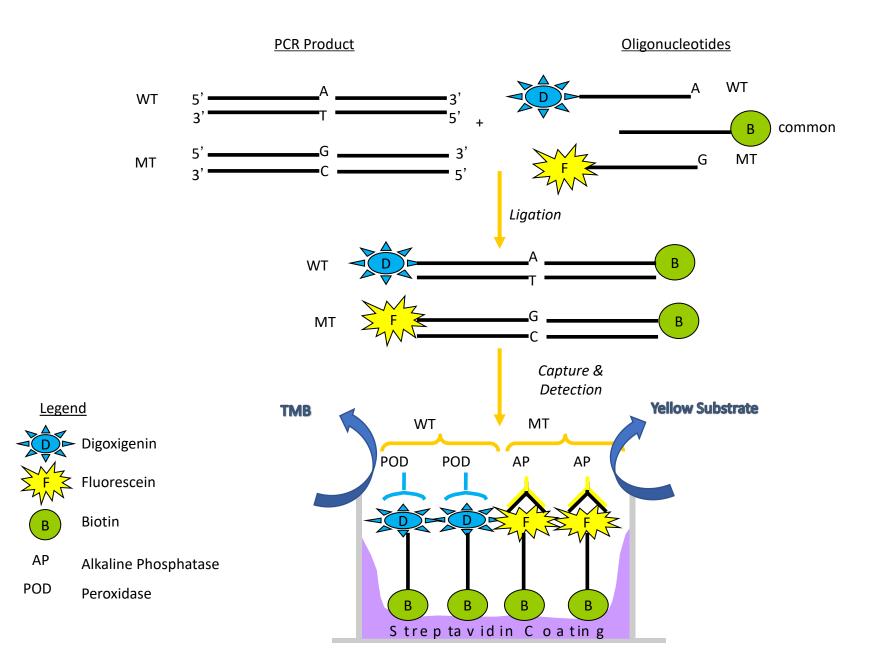
# Table 1. Integrase mutations detected in individuals with virologic failure of DTG-based ART (N=58)

- OLA detected 15/17 mutations (88.2%); two G118R were missed, one had indeterminate OLA result and the other (2.8% by PacBio) was wildtype in OLA
- OLA detected minority variants quantified at 3.6%, 7.1%, 11.1%, 16.7% and 17.6% by PacBio
- Ligation failed, resulting in indeterminate OLA results (negative mutant and wildtype reactions) at 17 codons (5.7%): 6 at G118R and 11 at Q148 R, H or K

# Figure 2. Sequences from samples with indeterminate OLA results at codons 118 and 148



| Mutations | Major Integrase Inhibitor (INSTI) Resistance Mutations (Stanford HIV Drug Resistance database) |      |       |         |         |         |       |         |       |       |
|-----------|------------------------------------------------------------------------------------------------|------|-------|---------|---------|---------|-------|---------|-------|-------|
| detected  | T66IK                                                                                          | E92Q | G118R | E138KAT | G140SAC | Y143RCH | S147G | Q148HRK | N155H | R263K |
| Number    | 9                                                                                              | 2    | 19    | 16      | 2       | 1       | 4     | 6       | 4     | 30    |
| Percent   | 15.5                                                                                           | 3.4  | 32.8  | 27.6    | 3.4     | 1.7     | 6.9   | 10.3    | 6.9   | 51.7  |


- Mutations in bold reduce DTG susceptibility or virological response
- G118R, Q148H/R/K, N155H and R263K were detected in 55/58 (95%) individuals reported to have DTG resistance at virologic failure; and as single mutations in 37/58 (64%)
- T66I/K and S147G were each detected as a single mutation in 1/58 (1.7%) patients with virologic failure; all other mutations occurred in combination with other INSTI-resistance mutations

## **Design of OLA probes:**

- Probes were designed to detect mutations G118R, Q148H/R/K, N155H and R263K in HIV subtypes A, B, C, D and AE
- Mutation-specific ligation probes were designed using alignments from the Los Alamos National Laboratory database

## **OLA optimization:**

- Laboratory ELISA-based OLA
- Mutation-specific standard curves were prepared with plasmid mixtures containing the mutation of



Note: Highlighted bases indicate polymorphisms not addressed by the G118R or Q148K/R/H probes

New modified probes were designed to accommodate the following common interfering polymorphisms:

- G118R: an alternate mut-specific probe with "A" at the ligation site, and a common probe with "RCC"
- Q148R: a "Y" at the third base from the ligation site was added to the mutant and wildtype-specific probes
- Most other polymorphisms not addressed by the original probes occurred in single samples

# OLA results after re-testing samples with modified probes for codons G118R and Q148R:

#### **Mutant detection:**

- 6/7 G118R mutations detected
- Final sensitivity across all DTG mutations = 16/17 (94.1%)

#### Indeterminate results:

- 2 at G118R; 3 at Q148R
- Final rate of indeterminates = 10/300 codons (3.3%)

# Conclusions

The OLA probes for detection of DTG resistance showed high sensitivity for



 OLA conditions were optimized for detection of mutant frequencies of ≥ 2% in the viral population

Figure 1. Oligonucleotide Ligation Assay (OLA)

### **Assessment of probes in clinical specimens**

- HIV IN was amplified from 50 banked HIV-infected plasma specimens that included multiple subtypes (A=4, B=8, C=10, D=9 and AE=9) and tested using the laboratory-based OLA
- OLA results were compared to prior PacBio (N=13) or Sanger sequencing (N=37)

- mutant detection compared to PacBio and Sanger sequencing, including minority variants at frequencies >3%
- Improved performance of OLA at codons 118 and 148 will require further optimization and testing of probes located in these highly polymorphic regions of HIV

# **Future direction**

- Further validate DTG OLA probes with a larger cohort of specimens enriched for mutant genotypes
- Include reagents for HIV integrase amplification and DTG resistance detection in OLA-Simple kits, and test performance of kits in the field



UNIVERSITY of WASHINGTON