



# Suggested citation:

Ria Sonigra, Barry Lutz, Nuttada Panpradist, "Python-based algorithm for binary classification of lateral flow test for HIV drug resistance detection". [Abstract ID: 1533781]. Biomedical Engineering Society Meeting. Seattle. Washington.





#### Python-based algorithm for binary classification of lateral flow test for HIV drug resistance detection

- Ria Sonigra [Abstract ID: 1533781]

Lutz Lab, Department of Bioengineering, University of Washington, Seattle Under the guidance of Dr. Nuttada Panpradist







- OLA-Simple is a simplified lab kit (LFT) that classifies WT and MUT HIV strains
- 5-10% operators in LMICs mistakenly classify OLA Simple test image results
- Goal: Develop an automatic quantitative analysis system for the OLA-Simple test



Image Source – Fig. 1a, Panpradist et. al. 2019, EbioMedicine





WT : Wild Type; MUT : Mutant; IND : Indeterminate



## **Algorithm Pipeline**



OpenCV, a computer vision Python library with built-in functions useful for image preprocessing



# **Initial Results**

| WT                |     |     | MUT  |            |      | IND              |     |     |
|-------------------|-----|-----|------|------------|------|------------------|-----|-----|
| WT                | MUT | IND | WT   | MUT        | IND  | WT               | MUT | IND |
| 111               | 0   | 59  | 5    | 38         | 17   | 0                | 0   | 10  |
| True WT : 111/170 |     |     | True | e MUT : 38 | 3/60 | True IND : 10/10 |     |     |
| = 65.3%           |     |     |      | = 63.33%   |      | = 100%           |     |     |

Increasing the contrast using Pillow or OpenCV did not increase model efficiency.

| Function Used for<br>Conversion to Gray (Step 3) | Binary Threshold<br>{205, 225}                              | Adaptive Threshold<br>(mean) {55,8}                         | Adaptive Threshold<br>(Gaussian mean) {89,4}                |
|--------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| COLOR_BGR2GRAY<br>[0.299·B+0.587·G+0.114·R]      | WT =65.3%<br>MUT = 63.33%<br>IND = 100%                     | WT = 144/170 = 84.7%<br>MUT = 51/60 = 85%<br>IND = 100%     | WT = 156/170 = 91.76%<br>MUT = 56/60 = 93.33%<br>IND = 100% |
| COLOR_RGB2GRAY<br>[0.299·R+0.587·G+0.114·B]      | WT = 117/170 = 68.82%<br>MUT = 35/60 = 58.33%<br>IND = 100% | WT = 152/170 = 89.41%<br>MUT = 52/60 = 86.66%<br>IND = 100% | WT = 161/170 = 94.71%<br>MUT = 59/60 = 98.33%<br>IND = 100% |









**Optimization** - to decide the number and position of columns to be extracted for counting bands (step 5 and 6) **Conclusion** - 3 columns positioned at 1/3rd, 1/2th, and 2/3rd of the ROI width gave the best accuracy







### Results

#### Summary of highest accuracy classified by our pipeline

| WT                |     |     | MUT              |        |     | IND             |     |     |
|-------------------|-----|-----|------------------|--------|-----|-----------------|-----|-----|
| WT                | MUT | IND | WT               | MUT    | IND | WT              | MUT | IND |
| 168               | 2   | 0   | 0                | 60     | 0   | 2               | 1   | 7   |
| True WT : 168/170 |     |     | True MUT : 60/60 |        |     | True IND : 7/10 |     |     |
| = 99%             |     |     |                  | = 100% |     | = 70%           |     |     |

- Misclassified WT images had erroneous ROI selection
- Limited accuracy of IND due to the nature of our dataset [IND only 2% 5%]
- Misclassified IND images had very light MUT or WT band, showing that algorithm was more accurate in binary classification than the mode calls by the human eye



### Wonders of the Grabcut algorithm



| 4 | - |  |
|---|---|--|
|   |   |  |

| ROI           |      |
|---------------|------|
| coordinates   | Goe  |
| extracted as  | algo |
| area selected | pip  |
| by user       |      |

Goes into our algorithm pipeline

| WT                |     |     | MUT              |          |     | IND              |     |     |
|-------------------|-----|-----|------------------|----------|-----|------------------|-----|-----|
| WT                | MUT | IND | WT               | MUT      | IND | WT               | MUT | IND |
| 169               | 1   | 0   | 0                | 60       | 1   | 0                | 0   | 10  |
| True WT : 169/170 |     |     | True MUT : 59/60 |          |     | True IND : 10/10 |     |     |
| = 99.41%          |     |     |                  | = 98.33% |     | = 100%           |     |     |

- In-built algorithm in Python; misclassified images had low band intensity
- Requires user interaction wherein users select the coordinates of the ROI



## Acknowledgements

#### **Guidance and collaboration:**

Dr. Nuttada Panpradist Prof. Barry Lutz Mutembesa Daniel Parker Ruth Jason Rupp Other Lutz lab members Check out other 10 BMES posters/talks: download here:



